INFO 1998

Introduction to Machine Learning, Fall 2019

Course Manager: Tanmay Bansal
Location: Olin 155
Lecture: Wed 5:30 - 6:30 PM
Discussion: Piazza
Grades: CMS

Lecturer: Tanmay Bansal, Dylan Tsai
Office Hours:

  • Mon: 2:30 - 3:30 PM (Rhodes 503)
  • Tue: 1:15 - 2:15 PM (Rhodes 405), 3 - 4 PM (Rhodes 503)
  • Wed: 2 - 3 PM (Rhodes 412)
  • Thu: 3:30 - 4:30 PM (Rhodes 503)


INFO 1998 is a ten week, one credit, S/U only course. It runs from September 18th through November 27th, 2019.

The goal of this course is to provide you with a high-level exposure to a wide range of Data Science techniques and Machine Learning models. From the basics of getting your Jupyter environment setup, to manipulating and visualizing data, to building supervised and unsupervised models, this class aims to give you the base intuition and skillset to continue developing and working on ML projects. We hope you to exit the course with an understanding of how models and optimization techniques work, as well as have the confidence and tools to solve future problems (e.g. ones you did not encounter in this course) on your own.

The key to succeed in the course is to try out everything yourself. The lecture and assignments are designed with this in mind — we did our best to convey an experience in which you get a chance to work on every technique and model. The course material is designed assuming you have no prior experience in machine learning, but does assume that you have been exposed to solving Computer Science problems at an introductory level (in any flavor / language). Accordingly, we will go over the basics of Python to make sure we are all on the same page. You are expected to put in an appropriate amount of effort to complete the assignments and the project.