
Lecture 8: Supervised Learning Pt. 2

INFO 1998: Introduction to Machine Learning

More Models, Bootstrapping, and Bagging



Agenda

1. Decision Trees
2. Logistic Regression
3. Validation Techniques

○ Bootstrapping & Bagging



Decision Trees



Asking Questions about Data

● Two Formulations: 
○ How do we capture the structure of our data? 
○ Or broadly, how do we make decisions? 

● In both cases, we ask questions. 
● Suppose we’re deciding whether to play tennis 

○ What questions can we ask ourselves? 
○

Source

https://towardsdatascience.com/https-medium-com-lorrli-classification-and-regression-analysis-with-decision-trees-c43cdbc58054


Scenario: Should we play tennis today?

● Is it raining? 
○ If so, no.
○ If not, continue…

● Is it too hot? 
○ If so, no. 
○ If not, continue. 

● Do I have a racket? 
○ If not, no.
○ If so, continue.

● Etc…



The Decision tree

Decision Tree
● supervised machine 

learning model
● breaking down our data 

by making a decision 
based on asking a series 
of questions based on 
features

Work To Do?

Stay In Weather?

Friends 
Busy?Beach Run

Stay In Movies

Yes No

Sunny Overcast Rainy

Yes No

Internal Node

Leaf Node

Branch

Source

https://towardsdatascience.com/https-medium-com-lorrli-classification-and-regression-analysis-with-decision-trees-c43cdbc58054


Intuition

● Suppose we have a big dataset with several features
○ We can split at several points along these features!
○ In fact, if these features are categorical we can ask as many questions as we have total 

possibilities!
● Every single question splits the data!
● So the best questions will try to split the data as much as possible
● These trees are nice and interpretable when we do them by hand
● But we can introduce ML to learn good decision trees based on our data



Learning Decision Trees

We will use a recursive partitioning algorithm
1. Start with all your data at the root node.
2. Find the best feature to split your data that creates the “purest” child nodes.

a. What is purity? 
3. Create child nodes based on this split.
4. Repeat the process for each child node until some stopping condition.

a. Place some limit on the depth – hyperparameter.



Making Good Splits

● Entropy & Information Gain
● What is entropy in chemistry? 



Entropy

● Entropy is the measure of how disorderly a dataset is. Maximum entropy is 
reached when all classes are equally likely to happen in our dataset. 

● Minimum entropy happens when all points in the dataset are 0.



Information Gain

● We want to create splits that minimize this entropy.
● Information gain is how much a particular split reduces entropy 
● We want to choose splits that give us the highest information gain.



Working Example
Student Study Hours Attendance (%) Result

Alex 7 85 Pass

Bailey 3 60 Fail

Casey 6 90 Pass

Dana 2 55 Fail

Eli 8 95 Pass

Fran 4 65 Fail

Glen 7 80 Pass

Harper 3 70 Fail

Indira 9 95 Pass

Jamie 2 50 Fail



Will students pass or fail: Calculate original entropy

● We have 10 students. 5 pass, 5 fail.
● The features we have are Study Hours, and Attendance. 

We compute the entropy of our original dataset. 



Consider Potential Splits

● Let's evaluate two possible splitting features:

1. Study Hours (with threshold > 6)
2. Study Hours (with threshold > 5)



Option 1: Split by "Study Hours > 6"

Left group (Study Hours > 6):

Alex (7 hours) → Pass
Eli (8 hours) → Pass
Glen (7 hours) → Pass
Indira (9 hours) → Pass
Result: 4 Pass, 0 Fail

Right group (Study Hours ≤ 6):

Bailey (3 hours) → Fail
Casey (6 hours) → Pass
Dana (2 hours) → Fail
Fran (4 hours) → Fail
Harper (3 hours) → Fail
Jamie (2 hours) → Fail
Result: 1 Pass, 5 Fail

Entropy = 0.65



Option 2: Split by “Study Hours > 5”

Left Group:

Alex (7 hours) → Pass
Casey (6 hours) → Pass
Eli (8 hours) → Pass
Glen (7 hours) → Pass
Indira (9 hours) → Pass
Result: 5 Pass, 0 Fail

Right group (Study Hours ≤ 5):

Bailey (3 hours) → Fail
Dana (2 hours) → Fail
Fran (4 hours) → Fail
Harper (3 hours) → Fail
Jamie (2 hours) → Fail
Result: 0 Pass, 5 Fail

Entropy = 0



Key Insights

1. The algorithm chooses the split 
that maximizes information gain

2. Good splits create purer groups 
in terms of the target variable

3. The best splits reduce entropy 
as much as possible

4. In real datasets, perfect splits 
are rare - the algorithm seeks 
the best available split

5. This process is applied 
recursively to build the 
complete tree



CART (Classification and Regression Trees)

• Used for Classification and 
Regression

• At each node, split on variables

• Each split minimizes 
error/impurity function

• Very interpretable

• Models a non-linear 
relationship!



Pros and Cons of Using Decision Trees

Pros Cons

Easy to interpret Overfitting ☹

Requires little data preparation 
(robust to missing data)

Requires parameter tuning (max 
depth)

Can use a lot of features Can only make horizontal/vertical splits 
(solvable with feat. eng. / ensembling)

Can capture non-linear relationships



What would these decision boundaries look like?



What would these decision boundaries look like?

“If B less than this value, it’s a red 
square. Otherwise, it’s a blue circle.”



What would these decision boundaries look like?

“If B less than this value, it’s a red 
square. Otherwise, it’s a blue circle.”

Uhhh…

Decision trees only make 

horizontal/vertical splits!



But…

Rotate!



How to Reduce Overfitting

1. Limit the max depth of the tree

Model 
Complexity

Depth = 0 

Depth = 1 

Depth = 2 

When training a decision tree, we have to specify the maximum 
depth a constructed tree can have



How to Reduce Overfitting

● There are no “curves” for each 
decision tree boundary line

● Limiting the depth of the tree 
limits the number of lines you 
are splitting on

Source

https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d


How to Reduce Overfitting

2) Train multiple decision 
trees and determine final 
output based on output of 
each decision tree

This is called a 
Random Forest Classifier

Source

https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d


Demo



Lecture 8: Supervised Learning Pt. 2
INFO 1998: Introduction to Machine Learning

Attendance!



Logistic Regression



Logistic Regression

 



Logistic Function

 

The Logistic Function “squeezes” numbers to be between 0 and 1

Allows us to interpret our prediction as a 
“probability” that something is true

 

 



Threshold

At what point do we differentiate 
between our classifications?
• f(x) below threshold: predict 0
• f(x) above threshold: predict 1

 

 



Pros and Cons of Using Logistic Regression

Pros Cons

Easy to interpret (probability) Only Capable of Binary Classification

Computationally efficient to compute No closed form solution (requires use 
of optimization algorithms)

Does not require parameter tuning

Logistic Regression is a simple model, therefore, oftentimes it is 
used as a good “baseline” to compare more complex models to



Validation Techniques



● Predict Continuous Data
● “On average, how wrong 

are we?”

● Predict Discrete or 
Categorical data

● “How many points do we 
get wrong?”

Regression Classification

Numbers Continuous

Review: Regression vs. Classification



Leave-P-out

Let D be our whole dataset
Choose a P
For every combination of P points in D:

Use a train/test split with those P points as test, the rest as train



Leave-P-out: different from K-fold!

Let’s say D has a size of 4. There are four data points: a, b, c, and d.
K-fold:

- K = 2.
- Each fold has a size of 2: {a,b} and {c,d}
- So, we only have 2 possible test sets: 

{a,b} and {c,d}
Leave-P-out:

- P = 2.
- We have 6 possible test sets:

{a,b}, {a,c}, {a,d}, {b,c}, {b,d}, and {c,d} 



Leave-P-out

Pros:
● Dependable (not random)
● Representative — checks all combinations

Cons:
● Slow!

○ Runtime increases with larger datasets
○ Runtime explodes with larger P



Monte Carlo Cross Validation

● Getting accuracy 1 time doesn’t tell us much
● Getting accuracy 2 times tells us a bit
● Getting accuracy 3 times tells us a bit more
● …
● Getting accuracy N times might be good enough!

Take the average of those N times



Monte Carlo CV

● Need to use new, random train/test split each time
○ If you use the same train/test split each time, you’re not getting any 

new information!
● Pros:

○ easy to implement
○ easy to make faster/slower by changing number of iterations

● Cons:
○ random -> train/test splits not guaranteed to be representative of 

dataset (might overlap, or miss some data)
○ harder to calculate how many iterations you need



The Bootstrap

What if we don’t have enough data?

● Use bootstrap datasets to approximate the test error
● Sample with replacement from the original training dataset (with n 

samples) to generate bootstrap datasets of size n
○ Some data points may appear more than once in the generated 

data
○ Some data points may not appear

● Estimate of test error = average error among bootstrap datasets 



Demo



Pipeline of the Bootstrap

❖ Does this give very good estimate of the prediction error?
❖ If no, why not? Does it underestimate or overestimate the prediction error?



Pipeline of the Bootstrap

No.

Since the bootstrap is sampling with replacement for B validation folds, each fold would 
have significant overlap with the original data used for training. Approximately, 2/3 of 
the training data would appear in each validation fold.

This leads to significant underestimation of the prediction error.

❖ Why 2/3?



Proof

Suppose there are n samples (yi, xi) in the training set data, then for each of the bootstrap 
validation fold b, every sample has probability 1/n of being selected into b. The probability of 
each data sample (yi, xi) not being in fold b is (1 - 1/n), respectively.

Probability of avoid selecting all n data points in fold b: (1 - 1/n)^n.

When n gets large, we have this probability converges to 1/e.
(Why this converges? Probably should review Calc I, or see: 
https://math.stackexchange.com/questions/882741/limit-of-1-x-nn-when-n-tends-to-infinity.)

Therefore, the fraction of overlapping data points in each fold is (1-1/e), which is about 2/3.

https://math.stackexchange.com/questions/882741/limit-of-1-x-nn-when-n-tends-to-infinity


How we fix the problem

❖ Requires some thoughts when generating validation set, especially for real-world 
complex data.

❖ Can partly fix this problem by only using predictions for those observations that did not 
(by chance) occur in the current bootstrap sample. 

❖ But the method gets complicated.



Bootstrap vs. k-fold

In K-fold validation, each of the K folds is distinct from the other (K − 1) 
folds used for training: there is no overlap. 

This is crucial for its success in estimating prediction error.



Why do we still use Bootstrap?

● Bootstrap allows us to use a computer to mimic the process of 
obtaining new data sets.

● Can be used to quantify the uncertainty associated with a given 
estimator or statistical learning method. 

● Provides an estimate of the standard error of a coefficient, or a 
confidence interval for that coefficient.
○ i.e. the variability of the model!



Bagging (Bootstrap Aggregating)

What if we don’t have enough data?
● Bagging is a common technique that builds on Bootstrapping

● Main Idea: Do Bootstrapping a bunch and make a classifier for each 
bootstrap, then choose majority prediction.

● Many weak learners aggregated typically outperform a single 
learner over the entire set, and overfits less.
○ Principle behind Random Forests (“forest” of decision trees)



Coming Up

● Assignment 7: Due tomorrow at 11:59pm

● Assignment 8: Due April 14th

● Next Lecture: Applications of Unsupervised Learning


