#### Lecture 7: Supervised Learning Pt. 1

Linear Classifiers and Cross Validation INFO 1998: Introduction to Machine Learning



#### Announcements

- Assignment 6: Due tonight at 11:59pm
- Assignment 7: Due next Monday at 11:59pm
- **Mid-Semester Check-Ins:** Due today! Please get them done.
- **Next Lecture:** More Supervised Learning! (Decision Trees & Logistic Regression)



#### Agenda

- 1. Linear Classifiers
  - Linear Perceptron
  - Support Vector Machines (SVMs)
- 2. Cross Validation (K-Fold)



### **Linear Classifiers**



#### **Linear Classifiers**

A linear classifier is a hyper plane that is used to classify our data points

A hyperplane is our **decision boundary** and our goal is to find the best hyper plane for our data.





#### Source

#### **Linearly Separable**

In this example, we cannot partition our dataset into yellow and purple with a linear decision boundary. This means that our data is <u>not</u> **linearly separable.** 

**Outliers** are frequently the reason a data set is not linearly separable.





#### **Perceptron Learning Algorithm**

Goal: find a normal vector w that perfectly classifies all the points in our data set Algorithm:

Initialize classifier as some random hyperplane While there exists a misclassified point x: Adjust classifier slightly so that it classifies x correctly (or, is a little closer to classifying x correctly) End While

"Use your mistakes as your stepping stones"



#### **History of the Linear Perceptron**

Frank Rosenblatt was first to implement perceptron!  $\rightarrow$  Cornell professor and alum PHD '56 🐻

Gave him the title of 'Father of Deep Learning'

Deep Learning  $\rightarrow$  Neural Networks a.k.a. Multilayer Perceptrons





#### **Limitations of Perceptron**

The training algorithm will never terminate if your training dataset is not linearly separable 😔

> Is a great model to understand the intuition behind the training of a linear classifier: iteratively improve classifier by using misclassified points



#### Perceptron

#### Algorithm

```
Initialize \vec{w} = \vec{0}

while TRUE do

m = 0

for (x_i, y_i) \in D do

if y_i(\vec{w}^T \cdot \vec{x_i}) \leq 0 then

\vec{w} \leftarrow \vec{w} + y\vec{x}

m \leftarrow m + 1

end if

end for

if m = 0 then

break

end if

end while
```

// Initialize  $\vec{w}$ .  $\vec{w} = \vec{0}$  misclassifies everything.

// Keep looping

- // Count the number of misclassifications, m
- // Loop over each (data, label) pair in the dataset,
- // If the pair  $(\vec{x_i}, y_i)$  is misclassified
- // Update the weight vector  $\vec{w}$

// Counter the number of misclassification

// If the most recent  $\vec{w}$  gave 0 misclassifications // Break out of the while-loop

// Otherwise, keep looping!



#### Lecture 7: Supervised Learning Pt. 1

Linear Classifiers and Cross Validation INFO 1998: Introduction to Machine Learning





Attendance!

## **Support Vector Machines**



#### Classify (+) and (-)





#### Which Hyperplane?





#### **Optimal Hyperplane**





#### **Support Vector Machine**

Memory efficient Effective in a higher dimensions Slow calculation time



#### **Maximal Margin Classifier**

- We want to find a **separating** hyperplane
- Once we find candidates for the hyperplane, we try to maximize the margin, the normal distance from borderline points
  - Only Support Vectors matter





#### What if...





#### Which Decision Boundary is better?



#### Margins

Use cost function to penalize misclassified points

Choice of cost function makes margin "hard" vs. "soft"



Penalty of error: distance to hyperplane multiplied by error cost C.



#### **Hard Margins**

- High penalty value
- The hyperplane can be dictated by a single outlier





#### **Soft Margins**

- Used in non-linearly separable datasets
- Allow for misclassification
- Can account for "dirty" boundaries





#### **Misclassification Penalty C**





#### Kernels

- You cannot linearly divide the 2 classes on the *xy* plane at right
- Introduce new feature, z = x<sup>2</sup> + y<sup>2</sup>
   (radial kernel)
- Map 2 dimensional data onto 3 dimensional data. Now a hyperplane is easy to find.





#### Kernels





#### **SVM has MANY Hyperparameters**





#### **Finding the Best Hyper Parameters**



#### **Curse of Dimensionality**

Our search space for the optimal hyper-parameters increases **exponentially** as the number of hyper parameters we are considering increases



#### **Overview**

| Perceptron                                                                                                 | SVM                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>A very simple model</li> <li>Will perform poorly if data is not<br/>linearly separable</li> </ul> | <ul> <li>More complex model because<br/>we have to choose the "penalty<br/>cost" associated with<br/>misclassifications</li> <li>Can transform feature space by<br/>choosing a Kernel</li> </ul> |







### **Cross Validation**





Often used in practice with *k*=5 or *k*=10.

Create equally sized *k* partitions, or **folds**, of training data

For each fold:

- Treat the *k-1* other folds as training data.
- Test on the chosen fold.

The average of these errors is the validation error



#### Dataset

### Suppose K = 5, 5-Fold CV









#### Calculate MSE = mse1





#### Calculate MSE = mse2





#### Calculate MSE = mse3



# And so on





MSE = Avg(mse1...5)



#### Matters less how we divide up

# Selection bias not present



#### **Leave-1-Out Cross Validation**

For each sample:

- Treat all other data as training data.
- Test on that one sample

The average of these errors is the validation error

Pro: Better on small datasets

**Pro:** More realistic (trained on most of the data)

**Con:** Takes longer to run



#### **Coming Up**

- Assignment 6: Due tonight at 11:59pm
- Assignment 7: Due next Monday at 11:59pm
- Mid-Semester Check-Ins: Due today! Please get them done ASAP
- **Next Lecture:** More Supervised Learning! (Decision Trees & Logistic Regression)

