Lecture 6: Intro to Classifiers

INFO 1998: Introduction to Machine Learning

Announcements

- No HW Due tonight!
- Mid-Semester Check-Ins today!
 - Last day next Monday
- HW 6 Released!

Agenda

- 1. What is a Classifier?
- 2. K-Nearest Neighbors Classifier
- 3. Review of Underfitting v. Overfitting
- 4. Confusion Matrices

What are Classifiers?

What are Classifiers?

Classifiers are able to help answer questions like...

- "What species is this?"
- "What major is a student in based on their classes?"
- "Which Hogwarts House do I belong to?"
- "Am I going to pass this class?"

What are Classifiers?

- Classifiers predict the class/category of a set of data points. This class/category is based off of the target variable we are looking at.
- Difference between linear regression and classifiers
 - Linear regression is used to predict the value of a **continuous variable**
 - Classifiers are used to predict categorical or binary variables

K-Nearest Neighbors Classifier

What is the KNN Classifier?

- Lazy learner classifier
- Easy to interpret
- Fast to calculate
- Good for coarse analysis

How Does It Work?

Uses the k (a user specified value) nearest data points to predict the unknown one

- A simple assumption: the values nearest to a data point are similar to it
- k is a hyperparameter of the KNN model
 - a parameter which affects the training process

Define a *k* value (in this case k = 3)

Define a k value (in this case k = 3)
Pick a point to predict (blue diamond)

Define a k value (in this case k = 3)
Pick a point to predict (blue diamond)
Count the k closest points

- **Define** a k value (in this case k = 3)
- Pick a point to predict
- (blue diamond)
- **Count** the number of closest points
- **Increase** the radius until the number of points in circle adds up to 3

Define a k value (in this case k = 3) **Pick** a point to predict (blue diamond) **Count** the number of closest points **Increase** the radius until the number of points within the radius adds up to 3 **Predict** the blue diamond to be a blue circle!

3/3

Underfitting v. Overfitting

Underfitting

Underfitting means we have <u>high bias</u> and <u>low variance</u>.

- Lack of relevant variables/factor
- Imposing limiting assumptions
 Linearity
 - Assumptions on distribution
 - Wrong values for parameters

Overfitting

Overfitting means we have <u>low bias</u> and <u>high variance</u>.

- Model fits too well to specific cases
- Model is over-sensitive to sample-specific noise
- Model introduces too many variables/complexities than needed

Relationship Between k and Fit

The **k** value you use has a relationship to the fit of the model

A higher k gives a smoother line, but too large of a k and it is the average of all the data (or the label that is most common/likely)

k=3

k=7

Confusion Matrix

What is a Confusion Matrix?

Table used to describe the performance of a classifier on a set of binary test data for which the true values are known

	P ['] (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Sensitivity

Called the true positive rate

Tells us how many positives are correctly identified as positives **Optimize for:** Initial diagnosis of fatal disease

	P ['] (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Sensitivity = True Positive/ (True Positive + False Negative)

Specificity

Called the true negative rate

Tells us how many negatives are correctly identified as negatives **Optimize for:** testing for a disease with a risky treatment

	P ['] (Predicted)	n' (Predicted)
P (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Specificity = True Negative/ (True Negative + False Positive)

Question

Which is an example of when you would want higher specificity?

- A. DNA tests for a death penalty case
- B. Deciding which iPhone to buy
- C. Airport Extra Screening

Attendance!

Overall Accuracy

Proportion of correct predictions

	P ['] (Predicted)	n' (Predicted)
р (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Accuracy = (True Positive + True Negative) / Total

Overall Error Rate

Proportion of incorrect predictions

	P ['] (Predicted)	n' (Predicted)
р (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Error = (False Positive + False Negative) / Total

Precision

Proportion of correct positive predictions among all positive predictions

	P ['] (Predicted)	n' (Predicted)
р (Actual)	True Positive	False Negative
n (Actual)	False Positive	True Negative

Precision = True Positive /
(True Positive + False Positive)

Coming Up

- Assignment 6: Due Monday 03/24 at 11:59pm!
- Mid-Semester Check-In: Now!
- Next Lecture: Supervised Learning Pt. 1