#### **Lecture 9: Unsupervised Learning and Clustering**

**INFO 1998: Introduction to Machine Learning** 



#### Announcements

• Final project due May 1st!



#### **Recap: Supervised Learning**

- The training data you feed into your algorithm includes desired solutions
- Two types you've seen so far: regressors and classifiers
- In both cases, there are definitive "answers" to learn from





Example 2: Classifier Predicts label





#### **Recap: Supervised Learning**

Supervised learning algorithms we have covered so far:

- k-Nearest Neighbors
- Linear Regression
- Logistic Regression
- Perceptron / SVM
- Decision Trees / Random Forest



Classification

Regression

Which of these are classifiers? Which are regressors?



# What are some limitations of supervised learning?

0000



## Today: <u>Un</u>supervised Learning

- In unsupervised learning, the training data is **unlabeled**
- Algorithm tries to learn by itself





An Example: Clustering



#### **Unsupervised Learning**

Some types of unsupervised learning problems:



#### Clustering

k-Means, Hierarchical Cluster Analysis (HCA), Gaussian Mixture Models (GMMs), etc.



#### **Dimensionality Reduction**

Principal Component Analysis (PCA), Locally Linear Embedding (LLE)



#### **Association Rule Learning**

Apriori, Eclat, Market Basket Analysis





### **Unsupervised Learning**

Some types of unsupervised learning problems:



#### Clustering

k-Means, Hierarchical Cluster Analysis (HCA), Gaussian Mixture Models (GMMs), etc.

2

#### **Dimensionality Reduction**

Principal Component Analysis (PCA), Locally Linear Embedding (LLE)

- 3
- Association Rule Learning







#### **Cluster Analysis**

- **Loose definition:** Clusters have objects which are "similar in some way" (and "dissimilar to objects in other clusters)
- Clusters are latent variables (variables that are unknown)
- Understanding clusters can:
  - Yield underlying trends in data
  - Supply useful parameters for predictive analysis
  - Helpful exercise, take any arbitrary supervised task, pretend it's unsupervised and work backwards. We can then see based on clustering what features/latent variables cause the trends or classifications



#### **Cluster Analysis**







#### **Clustering Application**

**Finding Population Structure in Genetic Data** 







# **Clustering Application**

#### **Recommender Systems**

Intuition: People who are "similar", will like the same things



A Bunch of Cool Logos





#### **Running Example: Recommender Systems**

Use 1: Collaborative Filtering

- "People similar to you also liked X"
- Use other's rating to suggest content

Pros

If cluster behavior is clear, can yield good insights

#### Cons

Computationally expensive Can lead to dominance of certain groups in predictions



#### **Running Example: Recommend MOVIES**

|              | Amy | Jef | Mike | Chris | Ken |
|--------------|-----|-----|------|-------|-----|
| The Piano    | -   | -   | +    |       | +   |
| Pulp Fiction | _   | +   | +    | -     | +   |
| Clueless     | +   |     | -    | +     | -   |
| Cliffhanger  | -   | -   | +    | -     | +   |
| Fargo        | -   | +   | +    | -     | +   |



#### **Running Example: Recommender Systems**

Use 2: Content filtering

Pros

- "Content similar to what YOU are viewing"
- Use user's watch history to suggest content

Recommendations made by learner are intuitive

Scalable

#### Cons

Limited to existing data about content

Difficult to suggest for new users

 $\mathbf{D}\mathbf{O}\mathbf{O}\mathbf{O}$ 



#### **Another Example: Cambridge Analytica**

- Uses Facebook profiles to build psychological profiles, then use traits for target advertising
- Ex. has personality test measuring openness, conscientiousness, extroversion, agreeableness and neuroticism -> different types of ads





# How do we actually perform this "cluster analysis"?





#### **Defining 'Similarity'**

- Remember from K Nearest Neighbors Discussion
- How do we calculate proximity of different data points?
- Euclidean distance:

$$E(x,y) = \sqrt{\sum_{i=0}^{n} (x_i - y_i)^2}$$

- Other distance measures:
  - Squared euclidean distance, manhattan distance



#### **Popular Clustering Algorithms**





## **Algorithm 1: Hierarchical Clustering**

Two types:

- Agglomerative Clustering
  - Creates a tree of increasingly large clusters (Bottom-up)
- Divisive Hierarchical Clustering
  - Creates a tree of increasingly small clusters (Top-down)





# **Agglomerative Clustering Algorithm**

- Steps:
  - Start with each point in its own cluster
  - Unite adjacent clusters together
  - Repeat
- Creates a tree of **increasingly large** clusters





# **Agglomerative Clustering Algorithm**

*How do we visualize clustering?* Using **dendrograms** 

- Each width represents distance between clusters before joining
- Useful for estimating how many clusters you have





# Demo 1





#### **Popular Clustering Algorithms**





### **Algorithm 2: k-Means Clustering**

Input parameter: k

- Starts with k random centroids
- Cluster points by calculating distance
- for each point from centroids
- Take average of clustered points
- Use as new centroids
- Repeat until convergence



Interactive Demo: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/



#### **Algorithm 2: k-Means Clustering**

- A greedy algorithm
- Disadvantages:
  - Initial means are randomly selected which can cause suboptimal partitions
    *Possible Solution*: Try a number of different starting points
  - $\circ \quad \text{Depends on the value of } k$



# Demo 2





#### **Popular Clustering Algorithms**





#### **Algorithm 3: Gaussian Mixture Models**

Input parameter: *k* 

- Starts with k Gaussian distributions
- Train on data to find the appropriate means and covariances for each cluster
- Compute probability of each test point lying inside each distribution and predict the one with the highest probability.





# Demo 3





## **Coming Up**

- Assignment 9:
  - Due next Wednesday, Nov 15th, 11:59PM
- Last Lecture:
  - Real-world applications of ML
- Final Project:
  - o <u>Due</u> Nov 29th, 11:59PM

