## Lecture 8: Linear Classifiers and More Model Validation

**INFO 1998: Introduction to Machine Learning** 



## Agenda

- 1. Perceptron + SVM
- 2. More Cross-Validation techniques



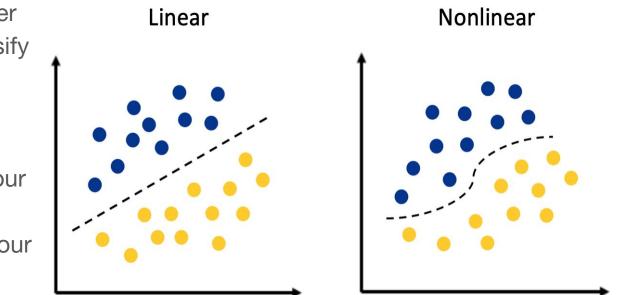
# **Linear Classifiers**



#### **Linear Classifiers**

A linear classifier is a hyper plane that is used to classify our data points

A hyperplane is our **decision boundary** and our goal is to find the hyper plane that best classifies our data

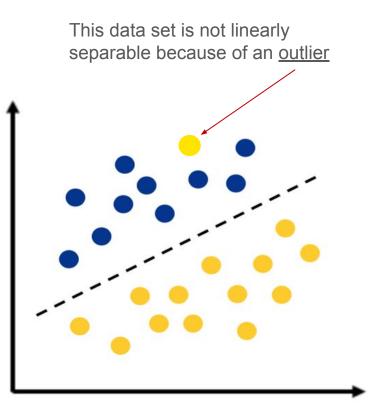




## **Linearly Separable**

In this example, we cannot partition our dataset into yellow and purple with a linear decision boundary. This means that our data is <u>not</u> **linearly separable.** 

**Outliers** are frequently the reason a data set is not linearly separable.





## **Perceptron Learning Algorithm**

Goal: find a normal vector w that perfectly classifies all the points in our data set Algorithm:

Initialize classifier as some random hyperplane While there exists a misclassified point x: Tilt classifier slightly so that it classifies x correctly (or, is a little closer to classifying x correctly) End While

"Use your mistakes as your stepping stones"



#### Perceptron in action <u>here</u>

Also, Frank Rosenblatt was first to implement perceptron

Gave him the title of 'Father of Deep Learning'





#### **Limitations of Perceptron**

The training algorithm will never terminate if your training dataset is not linearly separable 🙁

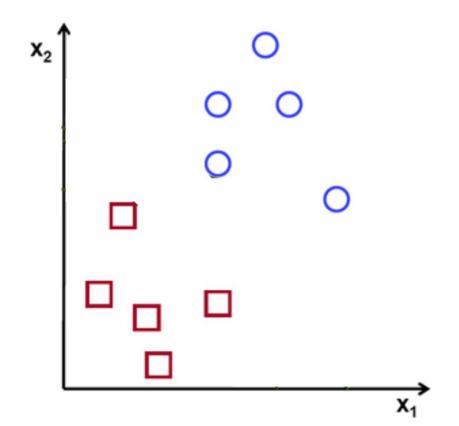
> Is a great model to understand the intuition behind the training of a linear classifier: iteratively improve classifier by using misclassified points  $\odot$





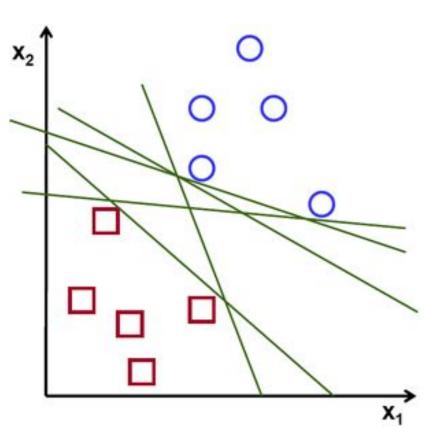


## Classify (+) and (-)





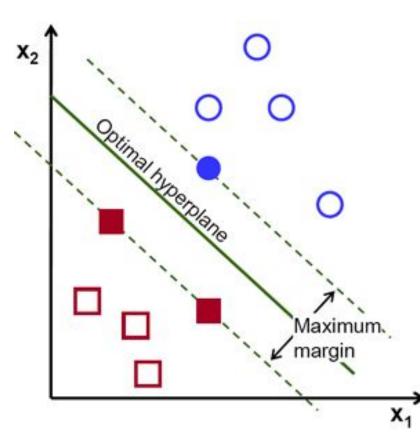
## Which Hyperplane?







## **Optimal Hyperplane**

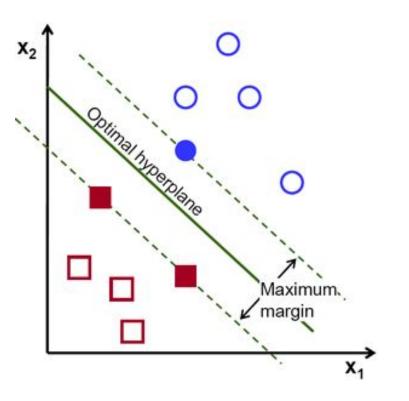






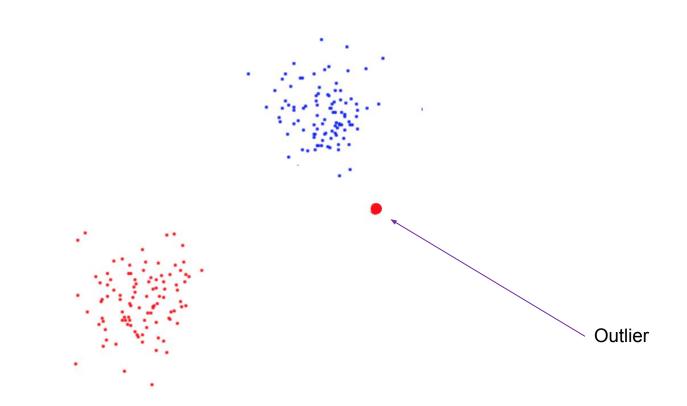
## **Maximal Margin Classifier**

- We want to find a **separating** hyperplane
- Once we find candidates for the hyperplane, we try to maximize the margin, the normal distance from borderline points
  - Only Support Vectors matter





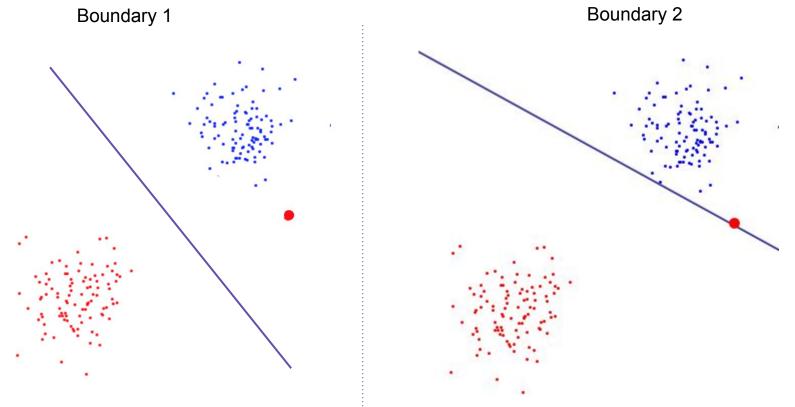
## What if...







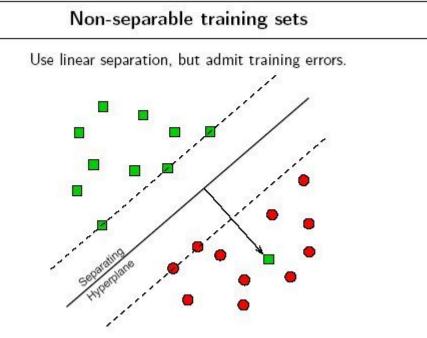
#### Which Decision Boundary is better?



## Margins

Use cost function to penalize misclassified points

Choice of cost function makes margin "hard" vs. "soft"

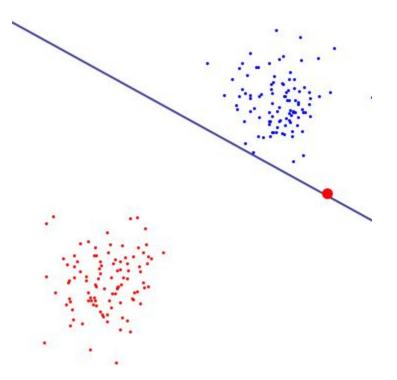


Penalty of error: distance to hyperplane multiplied by error cost C.



## **Hard Margins**

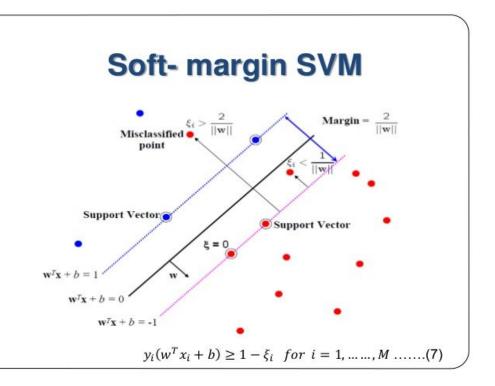
- High penalty value
- The hyperplane can be dictated by a single outlier





## **Soft Margins**

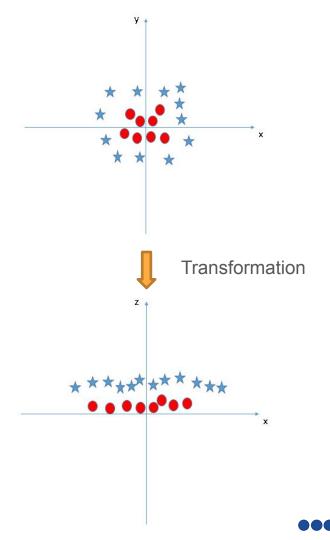
- Used in non-linearly separable datasets
- Allow for misclassification
- Can account for "dirty" boundaries





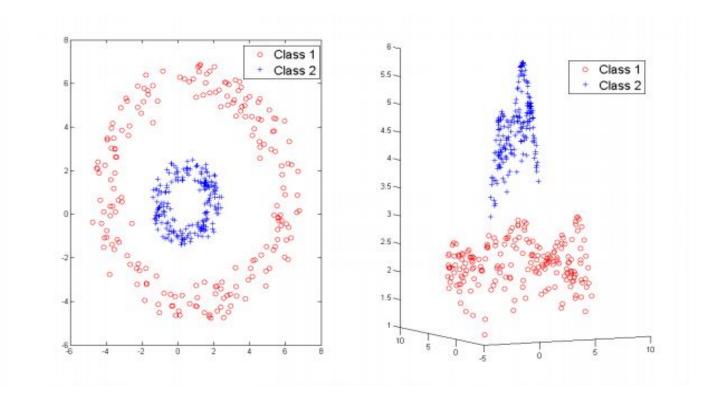
## Kernels

- You cannot linearly divide the 2 classes on the *xy* plane at right
- Introduce new feature, z = x<sup>2</sup> + y<sup>2</sup>
   (radial kernel)
- Map 2 dimensional data onto 3 dimensional data. Now a hyperplane is easy to find.





## Kernels



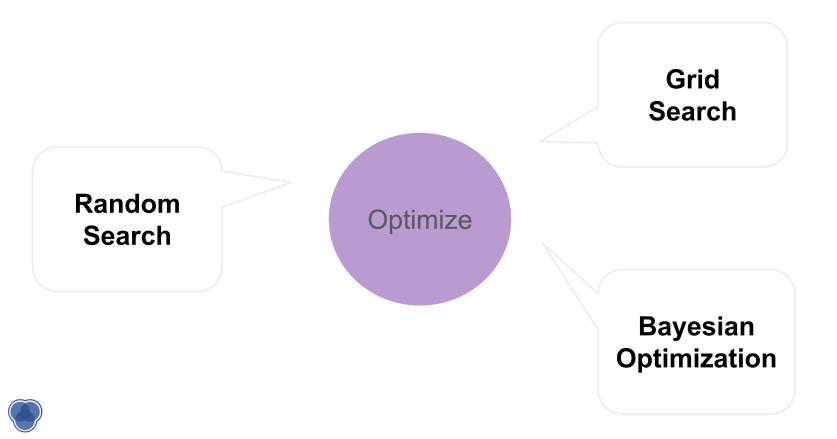


## **SVM** has **MANY** Hyperparameters





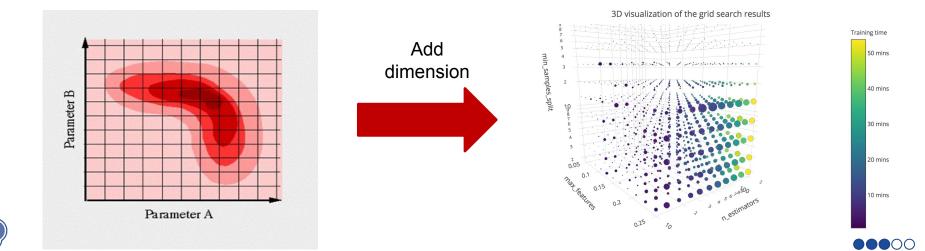




••••

## **Curse of Dimensionality**

Our search space for the optimal hyper-parameters increases **exponentially** as the number of hyper parameters we are considering increases



## **Overview**

| Perceptron                                                                                                 | SVM                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>A very simple model</li> <li>Will perform poorly if data is not<br/>linearly separable</li> </ul> | <ul> <li>More complex model because<br/>we have to choose the "penalty<br/>cost" associated with<br/>misclassifications</li> <li>Can transform feature space by<br/>choosing a Kernel</li> </ul> |







## **Validation Techniques**





Let **D** be our whole dataset

Choose a **P** 

For every combination of **P** points in **D**:

Use a train/test split with those **P** points as test, the rest as train



## Leave-P-out: different from K-fold!

Let's say **D** has a size of 4. There are four data points: *a*, *b*, *c*, and *d*. K-fold:

- K = 2.
- Each fold has a size of 2: {*a*,*b*} and {*c*,*d*}
- So, we only have 2 possible test sets:
   {a,b} and {c,d}

Leave-P-out:

- P = 2.
- We have 6 possible test sets:
  - {*a*,*b*}, {*a*,*c*}, {*a*,*d*}, {*b*,*c*}, {*b*,*d*}, and {*c*,*d*}



#### Leave-P-out

Pros:

- Dependable (not random)
- Representative checks all combinations

Cons:

- Slow!
  - Runtime <u>increases</u> with larger datasets
  - Runtime <u>explodes</u> with larger P



## **Monte Carlo Cross Validation**

- Getting accuracy **1** time doesn't tell us much
- Getting accuracy **2** times tells us a bit
- Getting accuracy **3** times tells us a bit more
- ...
- Getting accuracy **N** times might be good enough!

Take the average of those **N** times



## Monte Carlo CV

- Need to use **new**, **random** train/test split each time
  - If you use the same train/test split each time, you're not getting any new information!
- Pros:
  - easy to implement
  - easy to make faster/slower by changing number of iterations
- Cons:
  - random -> train/test splits not guaranteed to be representative of dataset (might overlap, or miss some data)
  - harder to calculate how many iterations you need



## The Bootstrap

#### What if we don't have enough data?

- Use **bootstrap datasets** to approximate the test error
- Sample with replacement from the original training dataset (with n samples) to generate **bootstrap datasets** of size n
  - Some data points may appear more than once in the generated data
  - Some data points may not appear
- Estimate of test error = average error among bootstrap datasets



#### Why do we still use Bootstrap?

- Bootstrap allows us to use a computer to mimic the process of obtaining new data sets.
- Can be used to quantify the uncertainty associated with a given estimator or statistical learning method.
- Provides an estimate of the standard error of a coefficient, or a confidence interval for that coefficient.
  - i.e. the variability of the model!



#### **Bagging (Bootstrap Aggregating)** What if we don't have enough data?

- Bagging is a common technique that builds on Bootstrapping
- Main Idea: Do Bootstrapping a bunch and make a classifier for each bootstrap, then choose majority prediction.
- Many weak learners aggregated typically outperform a single learner over the entire set, and overfits less.
  - Principle behind Random Forests ("forest" of decision trees)







## **Coming Up**

- Assignment 7: Due tonight at 11:59pm
- Assignment 8: Due next Wednesday April 17th, (11:59pm)
- Final Project: Due Wednesday, May 1st (11:59pm)
- Next Lecture: Applications of Unsupervised Learning

