
INFO 1998: Introduction to Machine Learning

Download Lecture5Homework.ipynb, lecture5dataA.csv, and lecture5dataB.csv

(also pull up Lecture4Homework.ipynb — you’ll find it helpful)

Pull up Lecture 5 Demo from website as well!



Lecture 5: Fundamentals of Machine Learning Pt. 2
INFO 1998: Introduction to Machine Learning

Tuning Models



Announcements

Mid-Semester Check-in

Where you should be right now:
- Have an idea of what your problem statement/hypothesis is
- Have your group chosen
- Have your data set chosen and some progress

Complete in OH or after lecture anytime between now and next Friday (03/22).
Cornell Drop Deadline: March 18th



What We’ll Cover

Last Time’s Goal: identify what ML is and write ML code (to some extent)

This Time’s Goal: how to tell if your ML model is useful 



Agenda

1. Review
2. Measuring Accuracy
3. Bias-Variance trade-off
4. Feature Selection
5. Other Types of machine learning



Review: Defining ML

We want to predict the future
● Take some known input and output
● Learn the data’s pattern and come up with a way to, given a future 

input, predict the corresponding output

Now: how do we learn the data’s pattern?
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Review: ML Pipeline



Review: Model

● “Model training” = learn a relationship/program

● “Model validation” = see if the learned relationship is accurate on data not part of your 
training set

● “Model testing” = final model performance



Measuring Bias / Loss
(training accuracy)
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Loss, Cost, and Score Functions

● Loss Function
○ Penalty for mislabelling a single data point

● Cost Function
○ Indicates how bad the whole model is
○ Applies loss function to each point, then 

combines that into a single number
■ ex: average of (loss from each point)

● Score Function
○ A more interpretable version of the cost 

function (how well we did)
○ Loss/Cost used in training to help a model 

learn, Score is just what we use for 
interpretability



Linear Regression Loss Formula: Euclidean Distance

loss ( xi , yi ) = (h( xi ) - yi )
2

Two things to note about this loss function:

● Positives and negatives won't cancel
● Large errors are penalized to a power of 2 more
● Cost Function - average of the loss function over all the 

points
In what situations might you want a high penalty loss function 
as opposed to a lower penalty function?



Solution: Compare to Baseline

● When determining accuracy, usually want to compare our 
model to a baseline
○ For regression, one baseline model is the model that 

predicts the average of the target value for every point
○ For our purposes: don’t worry about the baseline model, 

just have a set of baseline predictions



Cost -> Accuracy Score

● sklearn's score function is:
1 - ([Cost of model] / [Cost of baseline])

● 1 is very, very good
● 0 means you were as bad as the baseline
● <0 means either your baseline predictions were accurate, or 

you really, really messed up



Training Data



Cost = 0, but model is horrible…

MORAL: Assumptions are important!



Overfitting and Underfitting
(what makes a model good?)



Model Goals

When training a model, we want our model to:

The first two are especially difficult to do simultaneously!
The more sensitive the model, the less generalizable and vice 
versa.

● Capture the trends of the training data
● Generalize well to other samples of the population
● Be moderately interpretable



Underfitting



Underfitting



Underfitting
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Underfitting



Underfitting



Underfitting: at least the models are consistent...



Overfitting



Overfitting



Overfitting



Overfitting



Overfitting



Overfitting



Overfitting: Inconsistent Models!



Overfitting: Results from training with high sensitivity 



Overfitting: doesn’t generalize well!



Definitions

Bias
- A measure of underfitting

Variance
- A measure of overfitting

Either alone is hard to interpret, but together they are helpful
http://www.r2d3.us/visual-intro-to-machine-learning-part-2/ 

http://www.r2d3.us/visual-intro-to-machine-learning-part-2/


Source

http://scott.fortmann-roe.com/docs/BiasVariance.html


What does this mean intuitively?

Bias
● Bad
● Results from 

incorrect 
assumptions in the 
learning algorithm

Variance
● Bad
● Results from 

sensitivity to 
fluctuations in the 
data



Balancing Bias and Variance

Source

http://scott.fortmann-roe.com/docs/BiasVariance.html


Feature Selection
(adjusting models)



Methods

● Goal: Find subset of features that gives a good enough model, 
   in a reasonable amount of time.



Methods

● Goal: Find subset of features that gives a good enough model, 
   in a reasonable amount of time.

● Method 1: Best Subset
○ Test all subsets for best one
○ Benefits:

■ Best subset out of current features
○ Drawbacks:

■ Slow
■ Even slower with feature engineering



Methods

● Method 2: Guess and Pray

Change things 
a little bit

See how the 
model does

Pick a few 
features that 
seem good

Groan

PrayPray

Pray some 
more

Give up

Be sad



Methods

● Goal: Find subset of features that gives a good enough model, 
   in a reasonable amount of time.

● Method 2: Guess and Pray
○ Guess
○ Benefits:

■ ??
○ Drawbacks:

■ Time consuming for data scientist
■ Unreliable



Methods

● Goal: Find subset of features that gives a good enough model, 
   in a reasonable amount of time.

● Method 3: Stepwise
○ Pick a few features, then programmatically add/remove features 

using statistics
○ Benefits:

■ Complexity and runtime are adjustable
○ Drawbacks:

■ Can do very badly if you’re not careful
■ Requires more thinking



Correlation, r

The correlation between two variables describes to what 
extent changing one would change the other. 

○ Real-valued in [-1,1]
○ A variable is always perfectly correlated with itself 

(correlation=1)



Important Case: Collinearity

Collinear: when two features have a correlation near -1 or 1

● If a feature is collinear with the target, then it’s a good 
choice for linear regression

● If two features are collinear, they’re redundant

○ Might as well not use one of them

○ Some models require/assume no collinear features 

○ Takes more time, and doesn’t add much information 
at the cost of increased variance/sensitivity



Side Note: Scaling and Normalizing

● Some models require data to be centered

● Some models need features to be on the same scale
● Can divide by max, minus min divide by max minus min, minus 

mean divide by standard deviation.



Other Ways to Adjust your Model

- HyperParameters

- Feature engineering

- Just changing to a different algorithm



Demo



Different Types of ML
(supervised & unsupervised)
(classification & regression)



Supervised vs. Unsupervised

Supervised learning…

- Known target variable info
- Validation examples

Unsupervised learning…

- Unknown target variables
- Difficult to validate
- Discover underlying trends in 

the data



Classification vs. Regression



Final Notes
Always remember both bias and variance!



Coming Up

• Assignment 4: Due tonight at midnight!
• Assignment 5: Due at midnight next Wednesday, March 20th
• Mid-Semester Check-In: Now till Friday, March 22nd.
• Next Lecture:  Intro to Classification


