Lecture 5: Fundamentals of Machine Learning Pt. 2

INFO 1998: Introduction to Machine Learning

Bias vs. Variance & Tuning Models

Announcements

Mid-Semester Check-in

Where you should be right now:

- Have an idea of what your problem statement/hypothesis is
- Have your group chosen
- Have your data set chosen and some progress

Complete in OH or after lecture anytime between **now** and **Oct 23rd** Cornell Drop Deadline: **Oct 21**

Apply to Cornell Data Science! 📣

- All subteams are recruiting freshmen this semester!
 - Deadline: October 17th, 11:59pm
 - Don't forget to also submit the College of Engineering <u>application</u>.
- Application Link:
 <u>https://cornelldata.science/recruitment</u>
- If you're enjoying this class...
 - \circ you'll LOVE being on CDS \odot

Subteam UTea trip!

What We'll Cover

Last Time's Goal: identify what ML is and write ML code (to some extent)

This Time's Goal: how to tell if your ML model is useful (good)

Agenda

- 1. Review
 - Types of Machine Learning
- 2. Measuring Accuracy/Error
- 3. Model Selection
- 4. Feature Selection

Review: Defining ML

We want to predict the future

- Take some known input and output
- Learn that data's "pattern" to:
 - Given a future input, predict¹ the corresponding output

¹ We model how the output is generated

Review: Machine Learning Pipeline

Review: Model

- "Model training" = learn a relationship
- "Model testing" = check if the learned relationship is generalizes
- "Model validation" = simulates model performance when used in real life

Different Types of ML (supervised & unsupervised) (classification & regression)

Supervised vs. Unsupervised

Supervised learning...

- Goal: Predict output
- Needs known output/target

Unsupervised learning...

- Goal: learn more about the data (ex. trends)
- Doesn't need known output

Examples of Supervised: Classification and Regression

Classification

Regression

Classification or Regression?

Select all images with a **bus** Click verify once there are none left.

Classification or Regression? Examples from my internship

Detecting fake students (adults using student discount)

Predicting the value of a customer

Measuring Training Accuracy

1. Split data (lecture 7)

2. Assess model accuracy (today)

3. Adjust Model (a bit today)

Loss, Cost, and Score Functions

• Loss Function

- How far is a prediction from its corresponding answer
- Used as a penalty for mislabelling in training to help a model learn

• Cost

• Applies loss function to each point, then combines that into a single number

• Metric (Score Function)

- How well the model did across all data points
- Interpretable, for the model builder

Examples of Loss & Metrics: Multiple Choice Exams

- How would you evaluate these?
 - If the answer is A) but you pick B)

9

Why does Akira say his meeting with Chie is "a matter of urgency" (line 32)?

- A) He fears that his own parents will disapprove of Naomi.
- B) He worries that Naomi will reject him and marry someone else.

10

Which choice provides the best evidence for the answer to the previous question?

- A) Line 39 ("I don't . . . you")
- B) Lines 39-42 ("Normally ... community")

. The graph of the function f is shown in the figure above. The value of $\lim_{x\to 0} f(1-x^2)$ is

(A) 1 (B) 2

Examples of Loss & Metrics: Multiple Choice Exams

- Zero-one loss:
 - 1 if prediction != answer
 - 0 if prediction == answer

Examples of Loss & Metrics: Google Maps

- How would you evaluate this?
 - If Google Maps says it will take 26 mins but it actually takes x minutes

Linear Regression Loss Formula: Euclidean Distance

loss (
$$x_i, y_i$$
) = (h(x_i) - y_i)²

Two things to note about this loss function:

- Positives and negatives won't cancel
- Large errors are penalized to a power of 2 (more)

In what situations might you want a low penalty loss function as opposed to this high penalty loss function?

Linear Regression Loss Formula: Euclidean Distance

loss (
$$x_i, y_i$$
) = (h(x_i) - y_i)²

What could the **cost function** be?

- MSE = (...)/N
 - Where N is the number of data points

How do you know if something is good?

• "I throw at a speed of 35 ft/sec."

How do you know if something is good?

• "I throw at a speed of 35 ft/sec. The average for pros is 27 ft/sec."

Compare to Baseline

- When evaluating accuracy, compare our model to a **baseline**
 - For regression, one baseline model is the model that predicts the **average** of the target value for every point
 - For our purposes: don't worry about the baseline *model*

Sk-learn's score function

1 - ([Cost of model] / [Cost of baseline])

- >0 means you beat the baseline
- 0 means you were equal to the baseline
- <0 means you're worse than the baseline

Overfitting and Underfitting (how generalizable is the performance?)

Model Goals

When training a model, we want our model to:

- Capture the trends of the training data sample
- Generalize well to the whole population
- Be moderately interpretable

The first two are especially difficult to do simultaneously!

• Want to choose the right amount of complexity

Generate Samples To Illustrate Over/Under fitting

Underfitting

Underfitting: Too simple

Underfitting

Underfitting: Too simple

Underfitting

Underfitting: Too simple

Underfitting: at least the models are consistent...

Overfitting: What's the issue?

Model trained on sample

Overfitting: Inconsistent Models!

Overfitting: Results from training with high sensitivity

Overfitting: doesn't generalize well!

Understanding Model Error

Aside: how do these affect the distribution?

Expected Test Error Decompositio

Framework for thinking about data:

- The world has randomness: data is randomly drawn from some distribution
- Some things have stable relations
 - Elephants are bigger than ants Ο
 - Sun exposure can cause sun burns Ο

- \rightarrow general relation but with some variation
 - Most things happen once, so we can only observe one of many the possible outcomes

Expected Test Error Decomposition

Bias

- Error that would still exist if you had an infinite amount of training data
- Inherent to the model
 - ex. We demonstrated high bias by using a linear classifier on non-linear data

Variance

- How would your model change if you had a different training set?
- Measures how specialized your model is to your specific training set

Noise

- Measures inherent ambiguity in the data distribution
- Cannot reduce "noise" by editing algorithm

High Bias

High Variance

Low Variance

What does this mean intuitively?

Bias

- Bad
- Results from incorrect assumptions in the

learning algorithm

Variance

- Bad
- Results from

sensitivity to

fluctuations in the

data

Balancing Bias and Variance

Detecting and Resolving Bias and Variance

- If: High train error
 - Increase model complexity
 - Add more information (features)
 - Boost (later lecture)
 - Change model assumptions
- If: Train error << test error (and test error still too high)
 - Reduce model complexity
 - Add more training data
 - Bag (later lecture)

Different Topic Ahead Any questions before we continue

Feature Selection (adjusting models)

Methods

- **Goal:** Find subset of features that gives a <u>good enough model</u>, in a <u>reasonable amount of time</u>.
- Why:
 - More interpretable
 - More stable results
 - Less redundant/potentially misleading data
 - Faster

Correlation, r

The correlation between two variables describes to what extent changing one would change the other.

- Real-valued in [-1,1]
- A variable is always perfectly correlated with itself (correlation=1)

Important Case: Collinearity

Collinear: when two features have a correlation near -1 or 1

- If a feature is collinear with the target, then it's a good choice for linear regression
- If two features are collinear, they're *redundant*
 - Might as well not use one of them
 - Some models *require/assume* no collinear features
 - Takes more time, and doesn't add much information at the cost of *increased variance/sensitivity*

Coming Up

- **Assignment 4:** Due tonight at midnight!
- Assignment 5: Due midnight next Friday (10/18)
- Mid-Semester Check-In: Now till Wednesday (10/23)
- Next Lecture: Intro to Classification

Have a great Fall Break!!

